

S&M algorithm: The Concept

S&M algorithm: The Concept -Action-

Input: Action
$$(\omega)$$

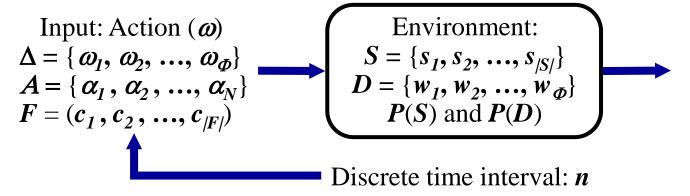
$$\Delta = \{\omega_1, \omega_2, ..., \omega_{\varpi}\}$$

$$A = \{\alpha_1, \alpha_2, ..., \alpha_N\}$$

$$F = (c_1, c_2, ..., c_{|F|})$$
Discrete time interval: n

Action (ω): ω is random variable of a stationary environment Θ over a language with alphabet set (A); $A = \{\alpha_1, \alpha_2, ..., \alpha_N\}$, N is the number of characters in the alphabet. The i^{th} action (ω_i) is a string, (word), in the source dictionary (Δ); $\Delta = \{\omega_1, \omega_2, ..., \omega_{\varpi}\}$, $\boldsymbol{\Phi}$ is the file size of the dictionary (Δ /); i.e. the number of words in Δ . The dictionary must contains at least all the characters in alphabet A; (Min ($|\Delta|$) = N). The prior probabilities distribution and the statistical parameters of the words in Δ are not known explicitly. The input source file (F) contains a sequence of symbols, (characters) of the alphabet A. At interval n, an input string of source symbols is matched with the longest string in the dictionary $(\omega(n))$. $\omega(n)$ is known as the n^{th} action.

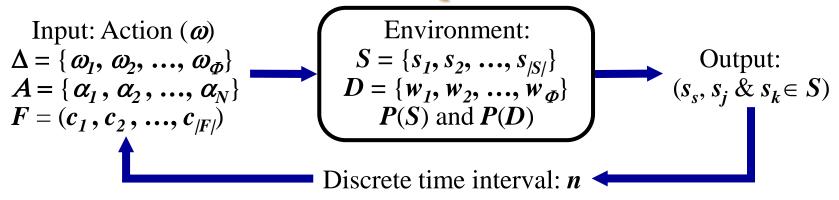
S&M algorithm: The Concept -Environment-



Environment (S, D): Set S is a set of |S| mutually exclusive sub sets, $s_1, s_2, ..., s_{|S|}$. Each sub set contains a number of unique words (w_i) of a dictionary (D), (where, s_i is a subset of D, and $s_i = \{w_{i1}, w_{i2}, ..., |s_i|\}$. P(S) is the set state probability vector, $P(S) = (p(s_1), p(s_2), ..., p(s_{|S|})) \mid p(s_i) = \sum_{j=1}^{|S_i|} p(w_{ij}) \cdot P(D)$ is the dictionary state probability vector $P(D) = (p(w_1), p(w_2), ..., p(w_{ob}))$.

The dictionary $D = \Delta$, however, the state probability vector of D is updated by a pre-defined updating scheme. Since the action $\omega_i = w_i \mid \omega(n) = \omega_i$ and $w(n) = w_i$, $\omega_i \in \Delta$ and $w_i \in D$, the environment has no reward-penalty response.

S&M algorithm: The Concept -Output-



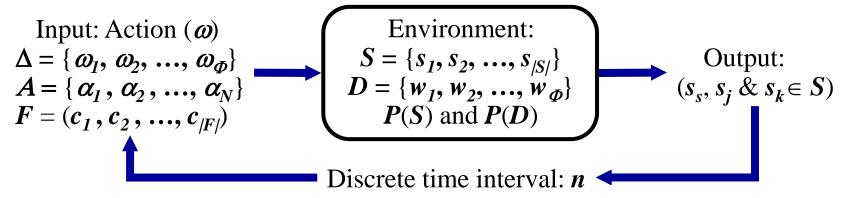
Output (s_s, s_j, s_k) : For every action $(\omega(n))$, the environment respond with three duple output $((s_s, s_j \text{ and } s_k \in S)$. The first is a set $(s_s \in S)$, called (the split set): The split set is that set contains the word, which, matches the action $\omega(n)$.

If
$$w_s = \omega(n) \mid \omega(n) = \omega_s$$
, and $w_s \in s(n) \mid s(n) = s_s$.

The two, other sets $(s_j \& s_k \in S)$, called (*the merger sets*), are selected randomly, from the |S| subsets of S, such that:

$$j < k$$
, and $j \neq k \neq s$.

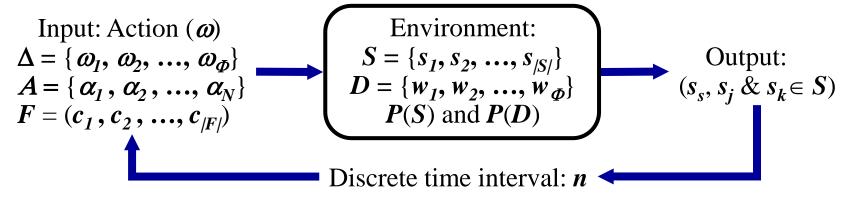
S&M algorithm: The Concept -Transition-



Transition (P(S), P(D)): The state, set probability vectors (P(S)) and the state dictionary probability vector (P(D)) are updated by a pre-defined updating scheme. The scheme should ensure expediency and asymptotic convergence of:

- the set state probability vector P(S) to (1/|S|, 1/|S|, ..., 1/|S|). i. e. the set probability $\lim_{n\to\infty} P(s_i) = 1/|S|$, for i = 1, 2, ..., |S|.
- 2) the dictionary state probability vector P(D) to the real probability vector of the source dictionary Δ .

S&M algorithm: The Concept The Action-Norms

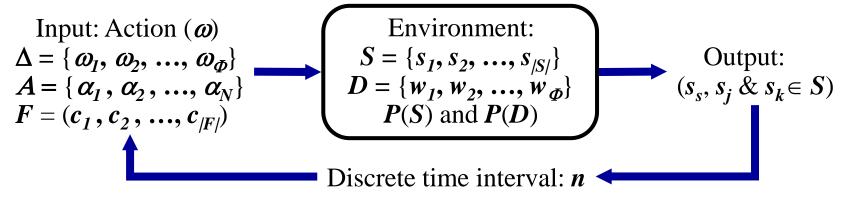


Action Norms $(\underline{H}_{\underline{\alpha}}, \underline{Q}_{\underline{\alpha}})$: The norms used as a datum reference for the automaton learning capability is called the *Action-Norms*, or $(\alpha\text{-Norms})$ of the probability vectors $P(\omega)$. H_{α} is the action entropy and the *MSE variable* (Q_{α}) , is the sum of, the square of, the word probabilities, for all words in Δ .

$$H_{\alpha}(n) = \sum_{i=1}^{|S|} \left[\sum_{j=1}^{|s_i|} (-p(\omega_{ij}) \mid \omega_{ij} \in s_i) \right] \cdot \log_2 \left[\sum_{j=1}^{|s_i|} (p(\omega_{ii}) \mid \omega_{ij} \in s_i) \right]$$

$$Q_{\alpha}(n) = \sum_{i=1}^{|S|} \sum_{j=1}^{|s_i|} \left[\left(p \left(\omega_{ij} \right) \mid \omega_{ij} \in s_i \right) \right]^2$$

S&M algorithm: The Concept The Set-Norms

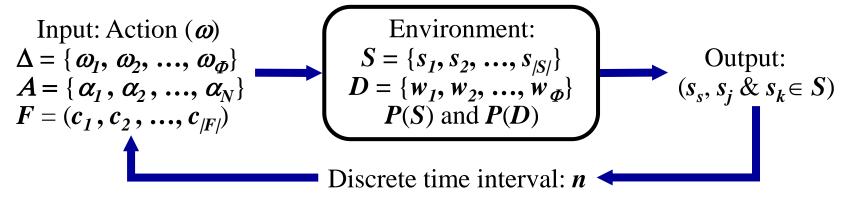


Set Norms (H_S, Q_S) : The norms used to test the expediency and optimality of the set state probability vectors P(S) are called the *Set-Norms*, or (S-Norms). H_S is the set real entropy, Q_S is the set real MSE *Variable*, while the state set entroy equal to $\log_2(|S|)$ and the state set MSE variable equal to (1/|S|).

$$H_{S}(n) = \sum_{i=1}^{|S|} \left[\sum_{j=1}^{|s_{i}|} (-p(\omega_{ij}) \mid \omega_{ij} \in s_{i}) / FBL(s_{i}) \right] \cdot \log_{2} \left[\sum_{j=1}^{|s_{i}|} (p(\omega_{ii}) \mid \omega_{ij} \in s_{i}) / FBL(s_{i}) \right]$$

$$Q_{S}(n) = \sum_{i=1}^{|S|} \left[\sum_{j=1}^{|s_{i}|} (\omega_{ij}) \mid \omega_{ij} \in s_{i} \right) / FBL(s_{i}) \right]^{2}$$

S&M algorithm: The Concept The Word-Norms



Word Norms (H_W, Q_W) : The norms used to test the expediency and optimality of the set state probability vectors P(w) are called *Word-Norms*, or (W-Norms). H_W is the state word entropy and the state word MSE variable (Q_W) is the sum of, the square of, word probabilities, for all words in D.

$$\begin{aligned} \boldsymbol{H}_{w}(n) = & \sum_{i=1}^{|S|} \left[\sum_{j=1}^{|s_{i}|} (-p_{inset}(w_{ij})|w_{ij} \in s_{i}) \; \boldsymbol{FBL}(s_{i}) / |S| \right] \cdot \log_{2} \left[\sum_{j=1}^{|s_{i}|} (p_{inset}(w_{ii})|w_{ij} \in s_{i}) \right. \\ & \left. \boldsymbol{FBL}(s_{i}) / |S| \right] \end{aligned}$$

$$Q_{W}(n) = \sum_{i=1}^{|S|} \sum_{j=1}^{|S_{i}|} \left[\left(p_{inset}(w_{ij}) \mid w_{ij} \in S_{i} \right) \cdot FBL(S_{i}) / |S| \right]^{2}$$